Precise Flattening of Cubic Bézier Segments

Thomas F. Hain
Athar L. Ahmad
David D. Langan

University of South Alabama
Mobile, Alabama

Konica Minolta
Boulder, Colorado

2D Curve Rendering

- Flattening Methods
 - Forward differencing
 - Recursive subdivision
 - Parabolic Approximation (current method)

Comparison of Flattening Techniques

- Forward Differencing
 - Uniform interval in \(t \)
 - Too many or too few segments
- Recursive subdivision (RS)
 - Conservative achieved flatness
 - Requires achieved flatness evaluation
- Parabolic approximation (PA)
 - Minimal number of segments
 - Faster than RS

Approximating the start of a Bézier curve

Parabolic approximation

Inflection Point
Inflection Points

\[
\begin{align*}
 t_1 &= \frac{b_1 - a_1}{b_2 - a_2} \\
 t_2 &= \frac{d_1 - a_1}{d_2 - a_2} \\
 t_c &= \frac{a_1 b_2 - a_2 b_1}{a_1 d_2 - a_2 d_1}
\end{align*}
\]

Performance

- Performance measures
 - Relative number of generated segments
 - Relative execution time (C code)
- Test data (curve segment) set
 - Control points at (1,0), (0,0), and (0,1)
 - 4th control point on 100x100 grid (-3 to +3)
 - Flatness criterion at 0.0005

Ratio of generated segments (RS/PA)

PA Relative Achieved Flatness

RS Relative Achieved Flatness

Relative execution time (RS/PA)
Conclusion

- PA produces (on average) $2/3\dagger$ as many linear segments as $RS\ddagger$
- C-coded PA runs $37\%\ddagger$ faster than C-coded RS

\dagger with flatness criterion being maintained within 4%
\ddagger results are insensitive to chosen flatness criterion